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Abstract
The ‘little group’ for massless particles (namely, the Lorentz transformations
� that leave a null vector invariant) is isomorphic to the Euclidean group E2:
translations and rotations in a plane. We show how to obtain explicitly the
rotation angle of E2 as a function of � and we relate that angle to Berry’s
topological phase. Some particles admit both signs of helicity, and it is then
possible to define a reduced density matrix for their polarization. However,
that density matrix is physically meaningless because it has no transformation
law under the Lorentz group, even under ordinary rotations.

PACS numbers: 11.30.Cp, 03.65.Vf

Eugene Wigner considered his paper ‘On unitary representations of the inhomogeneous
Lorentz group’ [1] as his most important contribution to physics [2]. The key feature in
that article was the introduction of a little group, namely a subgroup under which a standard
vector sµ is invariant. For example, a timelike sµ is (1, 0, 0, 0) and the little group is the
familiar rotation group SO(3). A null standard vector can be taken as (1, 0, 0, 1). Spacelike
standard vectors have no physical interest.

Massless particles are of prime importance not only in particle physics, but also in
quantum information theory: discrete degrees of freedom of photons are the standard physical
realisation of quantum bits. To compare data obtained by observers in relative motion, we need
the transformation law of these discrete degrees of freedom under Lorentz transformations.
This problem has recently been the subject of intensive activity [3, 4]. This letter presents an
alternative, more efficient approach to the quantum properties of the little group.

To find explicitly the little group that corresponds to the null sµ, let us introduce an
auxiliary complex null vector mµ such that [5]

mµsµ = mµmµ = 0 (1)

m∗
µmµ = −1 (2)
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and a real null vector nµ that satisfies

nµmµ = 0 (3)

nµsµ = 1. (4)

All these properties are manifestly Lorentz invariant. Moreover, they still hold under the
transformation

mµ → eiξmµ + γ sµ (5)

nµ → nµ + eiξ γ ∗mµ + e−iξ γm∗
µ + |γ |2sµ (6)

where γ = α + iβ is any complex number. Therefore the above transformation of mµ and nµ

is a subgroup of the Lorentz group. We thereby obtain a representation of the generic little
group element

g = S(α, β)Rz(ξ) (7)

where the S(α, β) form a subgroup which is isomorphic to the translations of a Euclidean plane
and Rz(ξ) is a rotation around the origin of that plane, which in this case is also a rotation
around the z-axis. We see that the little group is E2, as shown in various ways by other
authors [6–9].

In the case of infinitesimal transformations in Minkowski space, we have

g = 1 + αA + βB + ξM12 (8)

where M12 ≡ J3, and A and B are commuting generators of translations in the 12-plane, for
example [10],

A = M01 + M31 and B = M02 + M32. (9)

In general, let �µ
ν denote the Lorentz transformation matrix and kν an arbitrary momentum.

The task is to find the little group matrix Wµ
ν that corresponds to �µ

ν and kν , namely

W(�, k) = L−1(�k)�L(k) (10)

where spacetime indices were omitted for brevity, and L(k) is the standard Lorentz
transformation (next equation) that converts s to an arbitrary momentum k. For example,
in the case of massive particles for which the little group is SO(3), if � is an ordinary rotation
then W is the same rotation irrespective of k. However if � is a boost, then W does depend
on k. Likewise the various terms in (7) may depend on k.

In this letter, we shall examine the group properties of massless particles. For
s = (1, 0, 0, 1), the standard Lorentz transformation, as defined in [9], is

L(k) = R(k̂)Bz(|k|) (11)

where Bz(ζ ) is a boost along the z-axis with velocity (1 − ζ 2)/(1 + ζ 2), and R(k̂) is the
standard rotation that carries the z-axis into the direction of the unit vector k̂. Again following
[9], if the direction of k̂ is given by spherical angles θ and φ, the standard rotation R(k̂)

consists of a rotation θ around the y-axis, followed by a rotation φ around the z-axis:

R(k̂) = Rz(φ)Ry(θ). (12)

In these formulae, all Lorentz transformations are passive, even if we occasionally use an
active wording.

These ‘standard’ transformations are necessary to define a unique polarization basis for
each k. When a general Lorentz transformation � brings s to k, the resulting polarization
basis is compared to the standard one, and thereby defines the phase rotation ω.
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We now prove by a classical geometric argument that, if the Lorentz transformation is
a pure rotation (� = R), then it follows from equation (10) that S(α, β) is simply the unit
matrix, and therefore α = β = 0. We also give a simple expression for the rotation angle ξ .
From the definition of the little group element, we have

W(R, k) = B−1
z (|k|)R−1(Rk̂)RR(k̂)Bz(|k|). (13)

Since the action of R−1(Rk̂)RR(k̂) leaves the z-axis invariant, it is equivalent to some rotation
Rz(�) around that axis,

W(R, k) = B−1
z (|k|)Rz(�)Bz(|k|) = Rz(�) (14)

and since W(R, k) is a special case of (10), it follows that in equation (7) we have Sµ
ν = δµ

ν

and α = β = 0. Equation (7) also gives ξ = � , and the remaining problem is to find the
explicit value of this angle.

To clarify the origin of the phase ξ in equation (7), we note that any rotation in a three-
dimensional space can be described by two angles that give the direction of the rotation axis,
and a third angle that gives the amount of rotation around that axis. A rotation from k to
q = Rk can be performed in many ways (denoted below by Rqk), in addition to the given R
that we are seeking to decompose. Since all such rotations satisfy

Rk = Rqkk R−1q = R−1
qk q (15)

the difference between them is a rotation that preserves q̂, if done after Rqk, or a rotation that
preserves k̂, if done before Rqk. In particular, q = RR−1

qk q, so that

RR−1
qk = Rq̂(ω) (16)

where Rq̂(ω) is a rotation around q̂. Among the infinity of possible Rqk we choose

Rqk = R(q̂)R−1(k̂) (17)

where R(q̂) and R(k̂) are standard rotations, as in equation (12). It follows that

R = RRk̂(ω)R(Rk̂)R−1(k̂) (18)

where RRk̂(ω) is a rotation around Rk̂, while R(Rk̂) and R(k̂) are the standard rotations that
carry the z-axis to Rk̂ and k̂, respectively. We can thus consider equation (16) as the definition
of RRk̂(ω).

Substituting this decomposition into equation (14), we obtain

W(R, k) = R−1(Rk̂)RRk̂(ω)R(Rk̂) = Rz(�) (19)

and we conclude that ξ = � = ω.
To obtain the rotation angle under a general Lorentz transformation, we decompose the

latter into two rotations and a standard boost Bz along the z-axis [11],

� = R2Bz(ζ )R1 (20)

where the parameter ζ is that defined after equation (11). Note that equation (11) was not
a general Lorentz transformation: it was the standard Lorentz transformation that is used to
define a polarization basis. On the other hand, equation (20) gives a general transformation,
which is naturally different.

As shown below, Bz alone does not lead to a phase rotation. Therefore,

ξ = ω1 + ω2 (21)

where both ω1 and ω2 are due to the rotations and are given by equation (18). On the other
hand, α and β are complicated functions of W , which are related to gauge invariance of
electromagnetic couplings in a field theory [8, 9].
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We now prove that Bz alone induces no phase rotation [3]. Consider a pure boost along
the z-axis, � = Bz(ζ ), and a generic null vector k = (|k|, k), where

k = |k|(sin θ cos φ, sin θ sin φ, cos θ). (22)

We define q = Bz(ζ )k = (|q|, q) where

q = |q|(sin θ ′ cos φ, sin θ ′ sin φ, cos θ ′). (23)

Note that the angle φ is the same for k and for q. Thus

R−1(q̂) = R−1
y (θ ′)R−1

z (φ). (24)

With the help of equations (12) and (24), we now substitute the standard Lorentz
transformations L(k) and L−1(q) as defined by (11), into the definition of the little group
element, equation (10), to obtain

W(Bz(ζ ), k) = B−1
z (|q|)R−1

y (θ ′)Bz(ζ )Ry(θ)Bz(|k|) (25)

where we used R−1
z (φ)Bz(ζ )Rz(φ) = Bz(ζ ).

Consider now the effect of the little group element (25) on the spacelike vector
y = (0, 0, 1, 0). That vector is not affected by a boost in the z direction, nor by a rotation
around the y-axis. Therefore

W(Bz(ζ ), k)y = y (26)

so that in this case ξ is either 0 or 2π . Since for ζ = 0 we expect ξ = 0, by continuity ξ = 0
for all ζ .

Note that although Bz(ζ ) alone does not lead to a phase rotation, it can affect the value
of ω2, since it indirectly appears in the definition of R2. Indeed, if we decompose R2 as in
equation (18), we obtain

R2 = RR2k̂2
(ω2)R(R2k̂2)R

−1(k̂2) (27)

where k2 is defined by

k2 = (|k2|, k2) = Bz(ζ )R1k. (28)

Thus we see that Bz(ζ ) appears in the decomposition of R2 and therefore affects ω2.
Up to this point, the discussion and the formalism were purely classical. In quantum

theory, one needs the unitary representations of the little group, from which those of the
complete Lorentz group can be derived. Each irreducible representation corresponds to some
species of elementary particles. According to equation (10), the general transformation law
is [6–9]

U(�)|k, σ 〉 =
∑
σ ′

Dσ ′σ [W(�, k)]|q, σ ′〉 (29)

where Dσ ′σ is a unitary representation of the little group and

|k, σ 〉 ≡ |k〉 ⊗ |σ 〉 (30)

is an appropriate basis. The helicity σ = J · k̂ of a massless particle is Lorentz invariant, so
that if we use it for labelling basis states, then the sum in equation (29) consists of a single
term, and

Dσ ′σ = eiξσ δσ ′σ (31)

where, for a Lorentz transformation which is a pure rotation, ξ is a function of R and k which
is explicitly given by equation (18).

It is experimentally known that some particles, like neutrinos (if they are indeed massless),
come with only one sign of helicity. Others, like photons, may have it with both signs, but
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then the phase angle ξ for them is different. In general, different values of |σ | refer to different
species of particles, such as photons and gravitons. Within the present formalism, we cannot
offer an explanation why, for a given species of particles, half-integral helicities appear with
a definite sign. Of course, there can be no helicity-statistics theorem, since we deal with a
single particle. These properties must follow from quantum field theory for interacting fields.

An application of the above results is a direct derivation of the Berry phase for massless
particles. Soon after the introduction of Berry’s phase [12] the latter was derived for photons
in the adiabatic approximation [13] and then [14] for arbitrary changes in momentum. Finally,
derivations that are based on the analysis of connections on Lie groups, and the Poincaré group
in particular, were given in [15, 16].

Consider a sequence of rotations that eventually restores the particle momentum to its
original value. Its net effect is some active rotation around the momentum’s direction, Rk̂(ω).
According to equations (19) and (31), the helicity eigenstates acquire phases −ωσ , where the
minus sign arises from the fact that the transformation law (31) is for passive rotations. To
relate this phase to the area on the unit sphere that is enclosed by the orbit of k̂, consider
an auxiliary unit vector v̂ in the plane perpendicular to k̂. It is tangent to the sphere at the
endpoint of k̂. Let the orthonormal triad k̂, v̂ and ŵ = k̂ × v̂ be parallel-transported along
that orbit. When the latter closes, the orthonormal triad does not return to itself, but ends up
as another triad at the same point, which is rotated by the angle ω in the v̂ŵ plane. Owing to
properties of the holonomy group [17], the rotation angle ω is related to the spherical angle
� by

ω =
∫

K dS =
∫

d� = � (32)

where K is the Gaussian curvature, which equals 1 for the unit sphere. The above integral is
over the area enclosed by the trajectory of k̂, and the sign of � depends on the orientation of
the trajectory. We thus obtain

ω = �. (33)

An important application of the little group analysis is the meaning of reduced density
matrices [18] which are a fundamental concept in quantum information theory. Their properties
are significantly modified by relativistic effects [19, 20]. For massless particles that admit
both signs of helicity, such as photons, a generic one-particle state is

|�〉 =
∫

dµ (k)
∑

σ

fσ (k)|k, σ 〉 (34)

where dµ(k) = d3k/(2π)3(2|k|) is a Lorentz-invariant measure. Then the reduced density
matrix for helicity, according to the usual rules, would be

ρστ =
∫

dµ (k)fσ (k)f ∗
τ (k). (35)

However, since ξ in equation (31) depends on the photon momentum (even for ordinary
rotations) the standard density matrix given by equation (35) has no transformation rule at all.
This makes the standard density matrix a useless concept, even when only a fixed reference
frame is considered, since any positive operator valued measure (POVM) that describes
an experimental set-up must have definite transformation properties at least under ordinary
rotations. It is only possible to define an ‘effective’ density matrix which depends on the
detection method [19, 20]. This behaviour contrasts with that of massive particles, for which
the little group is SO(3) and reduced density matrices behave properly under rotations, while
there is no transformation law only under boosts [21].
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The absence of any Lorentz transformation law for ρ is due to the fact that the momenta k
transform linearly, but the law of transformation of helicity depends explicitly on k. When we
compute ρ by summing over momenta, all knowledge of them is lost and it is then impossible
to obtain the new ρ by transforming the old one. There is an analogous situation in classical
statistical mechanics: a Liouville function can be defined in any Lorentz frame [22], but it
has no definite transformation law from one frame to another. Only the complete dynamical
system has a transformation law [23].

In summary, we have shown how apparently disparate notions—Wigner’s little group and
Berry’s phase—are closely related. It is curious that the proof made repeated use of ordinary
rotations, namely the SO(3) group, which is by itself another little group of the Lorentz group.
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